STUDIES ON ARUGOMYCIN, A NEW ANTHRACYCLINE ANTIBIOTIC PART II. STRUCTURAL ELUCIDATION OF ARUGOMYCIN

Hiroyuki Kawai, Yoichi Hayakawa, Masaya Nakagawa, Kazuo Furihata, Haruo Seto and Noboru Otake*

Institute of Applied Microbiology, The University of Tokyo Bunkyo-ku, Tokyo, Japan 113

Summary: The total structure of arugomycin has been determined as shown in Fig. 1 based on spectroscopic data and chemical degradation.

In the previous paper¹⁾ we reported the structures of degradation products of arugomycin $(AGM)^{2}$, i.e. arugorol, AG1, AG2 and AG3 based on the ¹H- and ¹³C-NMR and mass spectral analysis. This paper describes structural determination of an additional hydrolysis product, AG4, and hydrogenolysis products, compounds A and B; these compounds gave enough experimental evidence to establish the total structure of AGM (Fig. 1).

The physicochemical properties of AGM are as follows; mp. 208-212°C, $[\alpha]_D^{25}$ +112° (c 0.1, CHCl₃:MeOH = 9:1), C₈₀H₁₁₀O₃₇N₂, <u>Anal</u>. found: C 56.22, H 6.85, O 35.14, N 1.65 %, calcd.: C 56.71, H 6.67, O 34.97, N 1.65 %, SIMS m/z 1694 (MH⁺), IR ν_{max}^{KBr} 3430, 2930, 1740, 1660, 1545, 1450, 1410, 1380, 1300, 1105 and 1000 cm⁻¹, UV λ_{max}^{MeOH} 235nm (ε 61500), 258(28300), 292 (10300) and 476 (17600). In addition to the sp² carbons in the chromophore unit (Table 1, C-1 to C-

In addition to the sp² carbons in the chromophore unit (Table 1, C-1 to C-13, -COOCH₃, C-1' to C-6' and (CH₃)₂N-), AGM contains two carbonyl ($\delta_{\rm C}$ 166.0 and 168.9) and two olefinic methine carbons ($\delta_{\rm C}$ 134.3 and 139.3) which were assigned to a fumaric acid residue based on comparison with the literature value³). The olefinic protons observed as an AB-type quartet at $\delta_{\rm H}$ 6.81 and 6.86 (J=17 Hz) are in agreement with this partial structure.

Methanolysis of AGM gave inter alia a methyl ester of methyl 4-O-fumaryl- α -L-diginoside⁴⁾, C₁₃H₂₀O₇. Since a resonance corresponding to the methyl ester signal ($\delta_{\rm H}$ 3.81) in this compound was not found in the ¹H-NMR spectrum of AGM, and since AGM was methylated by diazomethane to give a methyl ester of AGM Me-AGM⁵⁾, C₈₁H₁₁₄O₃₇N₂, one of the carboxyl functions of the fumaric acid residue must be free in the parent compound. Consequently the 4-O-fumaryl- α -L-diginose moiety must be glycosidically combined to the terminal of a sugar chain.

The SI-mass spectrum of $AG4^{6}$ ($C_{62}H_{86}O_{28}N_2$) obtained as a partial hydrolysis product of AGM^{1} gave the protonated molecule at 1308 (MH⁺) which is

Table 1. 100MHz ¹³C-NMR data of compound A (in CDCl₃), AG4 (in CDCl₃), AGM (in d-pyridine)

	AGH (TH	u5-pyr 1011	10)
	А	AG4	AGM
123445a a 445566789101112 000 1111123000 123445687891011112 12345687891011112 123456878910111112 123456878910111112 123468789100000000000000000000000000000000000	748969682045882069094856207 791560291468051994858207 48215191582275418147259688724		91 60000040000040000040000000000000000000
S-1 C-1 C-2 C-3 C-4 C-5 C-6	97744 9774 9774 9774 9774 9774 9774 977	9776 9774 9776 9776 9776 9776 9776	100.0 34.0 65.0 82.3 67.9 17.1
S-2 C-1 C-2 C-3 C-4 C-5 C-6 -CH3	9408799004 9408799004	20056702 910005 910005 910005 712	7950009 9197084 9197084
S-3 C-1 C-2 C-3 C-4 C-5 C-6 C-6	101.6 74.2 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66	101.4 30.9 74.34 667.1 56.0 56.3	102.394 757.394 677.77.6 156.1 *

*Tentative assignments

**Obscured by the solvent peak

is a mono deoxyfucosyl derivative of AG2 comprising arugorol (ARG), DEC, deFUC and DIG in the ratio of 1:1:2:2. Comparison of the ¹³C-NMR spectra of AG2 and AG4 revealed the glycosidation shift⁷⁾ of C-4 of DIG from $\delta_{\rm C}$ 68.2¹⁾ to 75.3 in AG4. However, since there exist two terminal DIG units (S-3 and S-4) with almost identical ¹³C chemical shifts in AG2, it was impossible to determine which of the terminal sugars in AG2 is glycosydated by deFUC(S-5) in AG4. Thus, AGM was subjected to catalytic hydrogenation (5 % Pd/BaSO₄) which resulted in the formation of hydrogenolysis products, compound A and compound B.

The ¹³C-NMR spectrum of A⁸ ($C_{49}H_{64}O_{21}N_2$) in CDCl₃ indicated the presence of a new methylene group at δ_C 20.7 due to C-7 of the chromophore and three anomeric carbons (δ_C 99.1, 99.6 and 101.6, δ_H 4.97, 5.25 and 5.33). The SI-mass spectrum of A showed the molecular ion peak at m/z 1018. These spectral data

	AG4	AGM
S-4 C-1 C-3 C-4 C-5 C-5 -0CH3	100.7 74.1 75.96* 176.8	102.1 74.99* 745.95* 156.1
S-5 C-1 C-2 C-3 C-4 C-5 C-6	976666 17 976666 17	100.0 34.8 85.8 67.4 17.2
S-6 C-1 C-2 C-3 C-4 C-5 C-6 -0CH3		100.4* 31.9* 74.9* 75.3* 156.1*
S-7 C-1 C-2 C-2 C-45 C-45 C-45 C-45 C-45 C-45 C-45 C-45		100.0* 31.7* 73.8 72.3 15.4 55.9*

larger than AG2¹⁾ by 130u. Since hydrolysis of AG4 gave 2-deoxyfucose(deFUC), diginose(DIG), and decilonitrose (DEC), this difference corresponds to the incarement of a deFUC unit. The ¹H- and ¹³C-NMR spectra of AG4 revealed five anomeric signals ($\delta_{\rm C}$ 99.2, 99.2, 99.4, 100.7 and 101.4, $\delta_{\rm H}$ 4.98, 5.01, 5.25, 5.32 and 5.52), two methoxy signals due to DIG ($\delta_{\rm C}$ 56.2 and 56.3) and one characteristic tertiary CH₃ signal due to DEC ($\delta_{\rm C}$ 25.2, $\delta_{\rm H}$ 1.75 singlet). These data indicate that AG4

Fig. 1. SIMS-diagnostic ions of AG4 and the structures of AG4, A, B, and AGM.

proved the structure of A to be 4'-(L-diginosyl-L-decilonitrosyl-2deoxyfucosyl)-7-deoxyarugorol (Fig. 1). Therefore, the additional deFUC(S-5) moiety is combined to C-4 of DIG(S-4) in AG2 and consequently, the structure of AG4 is illustrated as shown in Fig. 1. This conclusion was supported by detailed analysis of the SI-mass diagnostic ions at m/z 860, 1017, 1164 and 1308 (see Fig. 1). The anomeric configuration of deFuc(S-5) was determined to be α [H-1 of DIG(S-5); J_{1,2ax}=2.0, J₁, 2eq=< 1Hz].

Compound B⁹) $(C_{31}H_{50}O_{16})$ which was isolated as an anomeric mixture, gave DIG and deFUC on acid hydrolysis (40% HCOOH, 85°C, 40 min). The ¹H-NMR spectrum of B proved the presence of four sugars [$\delta_{\rm H}$ 4.76, dd, J=10.4, 2.0 Hz (β -form) $\delta_{\rm H}$ 5.42, dd, J=2.0, <1 Hz(α -form), $\delta_{\rm H}$ 4.97, dd, J=2.0, <1 Hz, $\delta_{\rm H}$ 4.99, dd, J=2.0, <1 Hz, $\delta_{\rm H}$ 5.05, dd, J=2.0, <1 Hz] and three methoxy groups ($\delta_{\rm H}$ 3.36, 3.41, 3.42) due to DIG. The IR spectrum of B gave absorption at 2400 - 2800, and 1720 cm⁻¹. Furthermore, B showed a characteristic AB-type quartet at $\delta_{\rm H}$ 6.80 and 6.90 (J=17 Hz) arising from a fumaric acid half ester residue. Thus B consists of one mole each of fumaric acid and deFUC and three moles of DIG. Since the hydroxy group at C-3 of deFUC(S-5) in B was revealed to be free by 1 H-NMR spectral analysis of its diacetyl derivative (<u>vide infra</u>) and, since the linkage of deFUC to DIG has been established in AG4, the 4-O-fumaryl-DIG-DIG unit must be attached to C-4 of deFUC(S-5).

Reaction of B with acetic anhydride in pyridine gave an anomeric mixture of diacetate. Since the separation of these anomers was very difficult, the diacetate was analyzed without further purification. In its ¹H-NMR spectrum, two acylated proton signals were observed at $\delta_{\rm H}$ 6.24 and 5.67 (the total area of these anomeric proton signals being equal to 1H), and 5.21. Irradiation of the proton at 5.21 collapsed the methylene signal (ddd) at $\delta_{\rm H}$ 1.95 and 2.10 to double doublets^{*} and thus, the acylated proton was unambiguously assigned to H-3 of 2-deFuc. Therefore, the fumaryl-Dig(S-7)-DIG(S-6) unit must be attached to deFUC(S-5) through an α -1,4 linkage and the structure of B is represented as shown in Fig. 1.

Based on these experimental results, the structure of AGM has been established as shown in Fig. 1 with some ambiguity about the absolute configuration.

* Due to the overlapping of complicated signals in this region, the changes of signals were detected by difference spectral method.

<u>Acknowledgment</u> This work was supported in part by a Grant-in-Aid for Cancer Research, The Ministry of Education, Science and Culture, Japan.

REFERENCES AND FOOTNOTES

- 1) H. Kawai et al., The preceding paper.
- 2) H. Kawai et al., J. Antibiotics, <u>36</u>, 1569 (1983).
- 3) H. Seto et al., Tetrahedron Lett. 23, 2667 (1982).
- 4) Methyl 4-O-fumaryl- α -L-diginoside methyl ester : $[\alpha]_D^{21} = -149^{\circ}$ (c 0.6, MeOH), M.W. (EI-mass) m/z 288 (M⁺), oily substance.
- 5) Me-AGM : $[\alpha]_D^{22} = +219^\circ$, m.p. 214-215°C, M.W. 1708, UV $\lambda \max_{max}^{MeOH}$ 234 nm(ϵ 53500), 257(25100), 289(16600), and 478(14200).
- 6) AG4 : $[\alpha]_D^{22} = +330^\circ$, m.p. 209-210°C, M.W. 1307, UV $_{\lambda} \max^{MeOH}$ 235 nm (ε 52700), 257(24300), 290(9500), and 478(16100).
- 7) S. Seo et al., J. Amer. Chem. Soc. <u>100</u>, 3331 (1978).
- 8) Compound A : $[\alpha]_D^{21} = +393^{\circ}(c \ 0.1, MeOH), m.p. 165-168^{\circ}C, M.W. 1017, UV <math>\lambda_{max}^{MeOH}$ 235 nm(ε 54900), 248(28500), 292(11900), and 478(16000).
- 9) Compound B : $[\alpha]_D^{21} = -93.9^\circ$ (c 0.1, MeOH), m.p. 115-118°C.

(Received in Japan 21 January 1984)

1944